BAIT

SSK2

mitogen-activated protein kinase kinase kinase SSK2, L000002826, YNR031C
MAP kinase kinase kinase of HOG1 mitogen-activated signaling pathway; interacts with Ssk1p, leading to autophosphorylation and activation of Ssk2p which phosphorylates Pbs2p; also mediates actin cytoskeleton recovery from osmotic stress; a HOG-independent function of Ssk2p mediates the calcium-sensitive phenotype of the ptp2 msg5 double disruptant; SSK2 has a paralog, SSK22, that arose from the whole genome duplication
UBI
PHO
KIN

External Database Linkouts

SGD | Entrez Gene | RefSeq | UniprotKB
Saccharomyces cerevisiae (S288c)

PREY

RAS2

CTN5, CYR3, GLC5, TSL7, Ras family GTPase RAS2, L000001583, YNL098C
GTP-binding protein; regulates nitrogen starvation response, sporulation, and filamentous growth; farnesylation and palmitoylation required for activity and localization to plasma membrane; homolog of mammalian Ras proto-oncogenes; RAS2 has a paralog, RAS1, that arose from the whole genome duplication
UBI
PHO

External Database Linkouts

SGD | Entrez Gene | RefSeq | UniprotKB
Saccharomyces cerevisiae (S288c)

Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Functional organization of the S. cerevisiae phosphorylation network.

Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ

Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]

Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]

Quantitative Score

  • 3.058163 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Curated By

  • BioGRID