BAIT

DNF1

aminophospholipid-translocating P4-type ATPase DNF1, YER166W
Aminophospholipid translocase (flippase); type 4 P-type ATPase; involved in phospholipid translocation, contributing to endocytosis, protein transport, and cellular polarization; localizes primarily to the plasma membrane; localizes to the shmoo tip where it has a redundant role in the cellular response to mating pheromone; DNF1 has a paralog, DNF2, that arose from the whole genome duplication
UBI
PHO

External Database Linkouts

SGD | Entrez Gene | RefSeq | UniprotKB
Saccharomyces cerevisiae (S288c)

PREY

DNF2

aminophospholipid-translocating P4-type ATPase DNF2, YDR093W
Aminophospholipid translocase (flippase); type 4 P-type ATPase; involved in phospholipid translocation, contributing to endocytosis, protein transport, and cellular polarization; localizes primarily to the plasma membrane; localizes to the shmoo tip where it has a redundant role in the cellular response to mating pheromone; DNF2 has a paralog, DNF1, that arose from the whole genome duplication
UBI
PHO

External Database Linkouts

SGD | Entrez Gene | RefSeq | UniprotKB
Saccharomyces cerevisiae (S288c)

Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Publication

The putative aminophospholipid translocases, DNF1 and DNF2, are not required for 7-nitrobenz-2-oxa-1,3-diazol-4-yl-phosphatidylserine flip across the plasma membrane of Saccharomyces cerevisiae.

Stevens HC, Malone L, Nichols JW

The regulation of phosphatidylserine (PS) distribution across the plasma membrane of eukaryotic cells has been implicated in numerous cell functions (e.g. apoptosis and coagulation). In a recent study, fluorescent phospholipids labeled in the acyl chain with 7-nitrobenz-2-oxa-1, 3-diazol-4-yl (NBD) were used to identify two members of the P4 subfamily of P-type ATPases, Dnf1p and Dnf2p, that are necessary for the ... [more]

J. Biol. Chem. Dec. 12, 2008; 283(50);35060-9 [Pubmed: 18931395]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: small molecule transport

Additional Notes

  • The inward-directed transport of phospholipids (phosphatidylcholine, phosphatidylethanolamine) across the plasma membrane was moderatly reduced in each single mutant, but was reduced to a greater extent in the double mutant.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DNF2 DNF1
PCA
PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

High-BioGRID
-
DNF1 DNF2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
635963
DNF1 DNF2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
344054
DNF1 DNF2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
1255093
DNF1 DNF2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
854653
DNF1 DNF2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
426758
DNF1 DNF2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
162241
DNF2 DNF1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
632941

Curated By

  • BioGRID