The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage.

In Saccharomyces cerevisiae, a DNA damage checkpoint in the S-phase is responsible for delaying DNA replication in response to genotoxic stress. This pathway is partially regulated by the checkpoint proteins Rad9, Rad17 and Rad24. Here, we describe a novel hypermutable phenotype for rad9Delta, rad17Delta and rad24Delta cells in response to ...
a chronic 0.01% dose of the DNA alkylating agent MMS. We report that this hypermutability results from DNA damage introduction during the S-phase and is dependent on a functional translesion synthesis pathway. In addition, we performed a genetic screen for interactions with rad9Delta that confer sensitivity to 0.01% MMS. We report and quantify 25 genetic interactions with rad9Delta, many of which involve the post-replication repair machinery. From these data, we conclude that defects in S-phase checkpoint regulation lead to increased reliance on mutagenic translesion synthesis, and we describe a novel role for members of the S-phase DNA damage checkpoint in suppressing mutagenic post-replicative repair in response to sublethal MMS treatment.
Mesh Terms:
Cyclin-Dependent Kinases, DNA Replication, DNA, Fungal, DNA-Binding Proteins, Models, Genetic, Phosphorylation, Replication Origin, Saccharomyces cerevisiae
DNA Repair (Amst.)
Date: Jul. 01, 2010
Download Curated Data For This Publication
101480
Switch View:
  • Interactions 25