A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination.

Protein ubiquitination is a powerful regulatory modification that influences nearly every aspect of eukaryotic cell biology. The general pathway for ubiquitin (Ub) modification requires the sequential activities of a Ub-activating enzyme (E1), a Ub transfer enzyme (E2), and a Ub ligase (E3). The E2 must recognize both the E1 and ...
a cognate E3 in addition to carrying activated Ub. These central functions are performed by a topologically conserved alpha/beta-fold core domain of approximately 150 residues shared by all E2s. However, as presented herein, the UbcH5 family of E2s can also bind Ub noncovalently on a surface well removed from the E2 active site. We present the solution structure of the UbcH5c/Ub noncovalent complex and demonstrate that this noncovalent interaction permits self-assembly of activated UbcH5c approximately Ub molecules. Self-assembly has profound consequences for the processive formation of polyubiquitin (poly-Ub) chains in ubiquitination reactions directed by the breast and ovarian cancer tumor susceptibility protein BRCA1.
Mesh Terms:
Amino Acid Sequence, BRCA1 Protein, Magnetic Resonance Spectroscopy, Models, Biological, Molecular Sequence Data, Polyubiquitin, Protein Binding, Protein Structure, Tertiary, Sequence Homology, Amino Acid, Ubiquitin, Ubiquitin-Conjugating Enzymes, Ubiquitin-Protein Ligases
Mol. Cell
Date: Mar. 17, 2006
Download Curated Data For This Publication
101612
Switch View:
  • Interactions 3