Bach1 inhibits oxidative stress-induced cellular senescence by impeding p53 function on chromatin.

Cellular senescence is one of the key strategies to suppress expansion of cells with mutations. Senescence is induced in response to genotoxic and oxidative stress. Here we show that the transcription factor Bach1 (BTB and CNC homology 1, basic leucine zipper transcription factor 1), which inhibits oxidative stress-inducible genes, is ...
a crucial negative regulator of oxidative stress-induced cellular senescence. Bach1-deficient murine embryonic fibroblasts showed a propensity to undergo more rapid and profound p53-dependent premature senescence than control wild-type cells in response to oxidative stress. Bach1 formed a complex that contained p53, histone deacetylase 1 and nuclear co-repressor N-coR. Bach1 was recruited to a subset of p53 target genes and contributed to impeding p53 action by promoting histone deacetylation. Because Bach1 is regulated by oxidative stress and heme, our data show that Bach1 connects oxygen metabolism and cellular senescence as a negative regulator of p53.
Mesh Terms:
Animals, Basic-Leucine Zipper Transcription Factors, Cell Aging, Cell Count, Cell Proliferation, Chromatin, Fibroblasts, Gene Expression Regulation, Histone Deacetylase 1, Histone Deacetylases, Mice, Mice, Knockout, Nuclear Proteins, Nuclear Receptor Co-Repressor 1, Oxidative Stress, Protein Binding, Repressor Proteins, Tumor Suppressor Protein p53
Nat. Struct. Mol. Biol.
Date: Dec. 01, 2008
Download Curated Data For This Publication
105274
Switch View:
  • Interactions 14