Functional analysis of human mitochondrial receptor Tom20 for protein import into mitochondria.

The mitochondrial import receptor translocase of the outer membrane of mitochondria (Tom20) consists of five segments, an N-terminal membrane-anchor segment, a linker segment rich in charged amino acids, a tetratricopeptide repeat motif, a glutamine-rich segment, and a C-terminal segment. To assess the role of each segment, four C-terminally truncated mutants ...
of the human receptor (hTom20) were constructed, and the effect of their overexpression in COS-7 cells was analyzed. Expression of a mutant lacking the tetratricopeptide repeat motif inhibited preornithine transcarbamylase (pOTC) import to the same extent as the wild-type receptor. Thus, overexpression of the membrane-anchor and the linker segments is sufficient for the inhibition of import. Expression of either the wild-type receptor or a mutant lacking the C-terminal end of 20 amino acid residues stimulated import of pOTC-green fluorescent protein (GFP), a fusion protein in which the presequene of pOTC was fused to green fluorescent protein. On the other hand, expression of mutants lacking either the glutamine-rich segment or larger deletions inhibited pOTC-GFP import. In vitro import of pOTC was inhibited by the wild-type hTom20 and the mutant lacking the C-terminal end, but much less strongly by the mutant lacking the glutamine-rich segment. On the other hand, import of pOTC-GFP was little affected by any of the forms of hTom20. In binding assays, pOTC binding to hTom20 was only moderately decreased by the deletion of the glutamine-rich segment, whereas pOTC-GFP binding was completely lost by this deletion. Binding of pOTCN-GFP a construct that contains an additional 58 N-terminal residues of mature OTC, resembled that of pOTC. All of these results indicate that the region 106-125 containing the glutamine-rich segment of hTom20 is essential for binding and import stimulation in vivo of pOTC-GFP and for inhibition of in vitro import of pOTC. The results also indicate that this region is important for mitochondrial aggregation. The different behaviors of pOTC and the pOTC-GFP chimera toward hTom20 mutants is explicable on the basis of the conformation of the precursor proteins.
Mesh Terms:
Animals, Base Sequence, Biological Transport, COS Cells, DNA Primers, Endopeptidases, Humans, Membrane Proteins, Membrane Transport Proteins, Microscopy, Electron, Mitochondria, Liver, Mutation, Protein Binding, Protein Folding, Protein Precursors, Rats, Receptors, Cell Surface, Recombinant Fusion Proteins
J. Biol. Chem.
Date: Oct. 09, 1998
Download Curated Data For This Publication
10787
Switch View:
  • Interactions 1