MEKK1/JNK signaling stabilizes and activates p53.

Activation of the tumor suppressor p53 by stress and damage stimuli often correlates with induction of stress kinases, Jun-NH2 kinase (JNK). As JNK association with p53 plays an important role in p53 stability, in the present study we have elucidated the relationship between the JNK-signaling pathway and p53 stability and ...
activity. Expression of a constitutively active form of JNKK upstream kinase, mitogen-activated protein kinase kinase kinase (DeltaMEKK1), increased the level of the exogenously transfected form of p53 in p53 null (10.1) cells as well as of endogenous p53 in MCF7 breast cancer cells. Increased p53 level by forced expression of DeltaMEKK1 coincided with a decrease in p53 ubiquitination in vivo and with prolonged p53 half-life. Computerized modeling of the JNK-binding site (amino acids 97-116; p7 region) enabled us to design mutations of exposed residues within this region. Respective mutations (p53(101-5-8)) and deletion (p53(Deltap7)) forms of p53 did not exhibit the same increase in p53 levels upon DeltaMEKK1 expression. In vitro phosphorylation of p53 by JNK abolished Mdm2 binding and targeting of p53 ubiquitination. Similarly, DeltaMEKK1 expression increased p53 phosphorylation by immunopurified JNK and dissociated p53-Mdm2 complexes. Transcriptional activity of p53, as measured via mdm2 promoter-driven luciferase, exhibited a substantial increase in DeltaMEKK1-expressing cells. Cotransfection of p53 and DeltaMEKK1 into p53 null cells potentiated p53-dependent apoptosis, suggesting that MEKK1 effectors contribute to the ability of p53 to mediate programmed cell death. Our results point to the role of MEKK1-JNK signaling in p53 stability, transcriptional activities, and apoptotic capacity as part of the cellular response to stress.
Mesh Terms:
Apoptosis, Cell Line, Transformed, Cells, Cultured, Computer Simulation, Humans, MAP Kinase Kinase Kinase 1, Nuclear Proteins, Phosphorylation, Protein-Serine-Threonine Kinases, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-mdm2, Signal Transduction, Transcriptional Activation, Tumor Suppressor Protein p53, Ubiquitins
Proc. Natl. Acad. Sci. U.S.A.
Date: Sep. 01, 1998
Download Curated Data For This Publication
121342
Switch View:
  • Interactions 2