Identification of the cathelicidin peptide LL-37 as agonist for the type I insulin-like growth factor receptor.

The human cathelicidin antimicrobial protein-18 and its C terminal peptide, LL-37, displays broad antimicrobial activity that is mediated through direct contact with the microbial cell membrane. In addition, recent studies reveal that LL-37 is involved in diverse biological processes such as immunomodulation, apoptosis, angiogenesis and wound healing. An intriguing role ...
for LL-37 in carcinogenesis is also beginning to emerge and the aim of this paper was to explore if and how LL-37 contributes to the signaling involved in tumor development. To this end, we investigated the putative interaction between LL-37 and growth factor receptors known to be involved in tumor growth and progression. Among several receptors tested, LL-37 bound with the highest affinity to insulin-like growth factor 1 receptor (IGF-1R), a receptor that is strongly linked to malignant cellular transformation. Furthermore, this interaction resulted in a dose-dependent phosphorylation and ubiquitination of IGF-1R, with downstream signaling confined to the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)-pathway but not affecting phosphatidylinositol 3 kinase/Akt signaling. We found that signaling induced by LL-37 was dependent on the recruitment of β-arrestin to the fully functional IGF-1R and by using mutant receptors we demonstrated that LL-37 signaling is dependent on β-arrestin-1 binding to the C-terminus of IGF-1R. When analyzing the biological consequences of increased ERK activation induced by LL-37, we found that it resulted in enhanced migration and invasion of malignant cells in an IGF-1R/β-arrestin manner, but did not affect cell proliferation. These results indicate that LL-37 may act as a partial agonist for IGF-1R, with subsequent intra-cellular signaling activation driven by the binding of β-arrestin-1 to the IGF-1R. Functional experiments show that LL-37-dependent activation of the IGF-1R signaling resulted in increased migratory and invasive potential of malignant cells.Oncogene advance online publication, 20 June 2011; doi:10.1038/onc.2011.239.
Unknown
Date: Jun. 20, 2011
Download Curated Data For This Publication
122994
Switch View:
  • Interactions 2