Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells.

The tight control of wild-type p53 by mainly MDM2 in normal cells is permanently lost in tumors harboring mutant p53, which exhibit dramatic constitutive p53 hyperstabilization that far exceeds that of wild-type p53 tumors. Importantly, mutant p53 hyperstabilization is critical for oncogenic gain of function of mutant p53 in vivo. ...
Current insight into the mechanism of this dysregulation is fragmentary and largely derived from ectopically constructed cell systems. Importantly, mutant p53 knock-in mice established that normal mutant p53 tissues have sufficient enzymatic reserves in MDM2 and other E3 ligases to maintain full control of mutant p53. We find that in human cancer cells, endogenous mutant p53, despite its ability to interact with MDM2, suffers from a profound lack of ubiquitination as the root of its degradation defect. In contrast to wild-type p53, the many mutant p53 proteins which are conformationally aberrant are engaged in complexes with the HSP90 chaperone machinery to prevent its aggregation. In contrast to wild-type p53 cancer cells, we show that in mutant p53 cancer cells, this HSP90 interaction blocks the endogenous MDM2 and CHIP (carboxy-terminus of Hsp70-interacting protein) E3 ligase activity. Interference with HSP90 either by RNA interference against HSF1, the transcriptional regulator of the HSP90 pathway, or by direct knockdown of Hsp90 protein or by pharmacologic inhibition of Hsp90 activity with 17AAG (17-allylamino-17-demethoxygeldanamycin) destroys the complex, liberates mutant p53, and reactivates endogenous MDM2 and CHIP to degrade mutant p53. Of note, 17AAG induces a stronger viability loss in mutant p53 than in wild-type p53 cancer cells. Our data support the rationale that suppression of mutant p53 levels in vivo in established cancers might achieve clinically significant effects.
Mesh Terms:
Acetylation, Animals, Benzoquinones, Cell Line, Tumor, HSP90 Heat-Shock Proteins, Humans, Lactams, Macrocyclic, Mice, Mice, Knockout, Molecular Chaperones, Mutant Proteins, Neoplasms, Proto-Oncogene Proteins c-mdm2, Tumor Suppressor Protein p53, Ubiquitin-Protein Ligases, Ubiquitination
Mol. Cancer Res.
Date: May. 01, 2011
Download 1 Interactions For This Publication
Switch View:
  • Interactions 1