Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast.
Although well defined in bacterial systems, the molecular mechanisms underlying ribosome recycling in eukaryotic cells have only begun to be explored. Recent studies have proposed a direct role for eukaryotic termination factors eRF1 and eRF3 (and the related factors Dom34 and Hbs1) in downstream recycling processes; however, our understanding of ... the connection between termination and recycling in eukaryotes is limited. Here, using an in vitro reconstituted yeast translation system, we identify a key role for the multifunctional ABC-family protein Rli1 in stimulating both eRF1-mediated termination and ribosome recycling in yeast. Through subsequent kinetic analysis, we uncover a network of regulatory features that provides mechanistic insight into how the events of termination and recycling are obligately ordered. These results establish a model in which eukaryotic termination and recycling are not clearly demarcated events, as they are in bacteria, but coupled stages of the same release-factor mediated process.
Proc. Natl. Acad. Sci. U.S.A.
Date: Dec. 20, 2011
PubMed ID: 22143755
View in: Pubmed Google Scholar
Download Curated Data For This Publication
128429
Switch View:
- Interactions 2