A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells.
We identified a novel protein kinase C (PKC)alpha-dependent signal to extracellular signal-regulated kinase (ERK)1/2 in mouse osteoclasts and Chinese hamster ovary (CHO) cells, specifically activated by the alphaVbeta3 integrin. It involves translocation (i.e. activation) of PKCalpha from the cytosol to the membrane and/or the Triton X-100-insoluble subcellular fractions, with recruitment ... into a complex with alphaVbeta3 integrin, growth factor receptor-bound protein (Grb2), focal adhesion kinase (FAK) in CHO cells and proline-rich tyrosine kinase (PYK2) in osteoclasts. Engagement of alphavbeta3 integrin triggered ERK1/2 phosphorylation, but the underlying molecular mechanism was surprisingly independent of the well known Shc/Ras/Raf-1 cascade, and of phosphorylated MAP/ERK kinase (MEK)1/2, so far the only recognized direct activator of ERK1/2. In contrast, PKCalpha was involved in ERK1/2 activation because inhibition of its activity prevented ERK1/2 phosphorylation. The tyrosine kinase c-Src also contributed to ERK1/2 activation, however, it did not interact with PKCalpha in the same molecular complex. The alphaVbeta3/PKCalpha complex formation was fully dependent upon the intracellular calcium concentration ([Ca2+]i), and the use of the intracellular Ca2+ chelator 1,2-bis(o-amino-phenoxy)ethane-N,N,N',N'-tetraaceticacidtetra (acetoxymethyl) ester (BAPTA-AM) also inhibited PKCalpha translocation and ERK1/2 phosphorylation. Functional studies showed that alphaVbeta3 integrin-activated PKCalpha was involved in cell migration and osteoclast bone resorption, but had no effect on the ability of cells to attach to LM609, suggesting a role in events downstream of alphaVbeta3 integrin engagement.
Mesh Terms:
Animals, Antibodies, Monoclonal, Bone Resorption, CHO Cells, Calcium, Carbazoles, Cell Movement, Cricetinae, Cricetulus, Indoles, Integrin alphaVbeta3, Mice, Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Osteoclasts, Phosphorylation, Protein-Tyrosine Kinases, Signal Transduction
Animals, Antibodies, Monoclonal, Bone Resorption, CHO Cells, Calcium, Carbazoles, Cell Movement, Cricetinae, Cricetulus, Indoles, Integrin alphaVbeta3, Mice, Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Osteoclasts, Phosphorylation, Protein-Tyrosine Kinases, Signal Transduction
J. Cell. Sci.
Date: Aug. 01, 2005
PubMed ID: 16014375
View in: Pubmed Google Scholar
Download Curated Data For This Publication
128685
Switch View:
- Interactions 1