Novel binding sites on clathrin and adaptors regulate distinct aspects of coat assembly.

Clathrin-coated vesicles (CCVs) sort proteins at the plasma membrane, endosomes and trans Golgi network for multiple membrane traffic pathways. Clathrin recruitment to membranes and its self-assembly into a polyhedral coat depends on adaptor molecules, which interact with membrane-associated vesicle cargo. To determine how adaptors induce clathrin recruitment and assembly, we ...
mapped novel interaction sites between these coat components. A site in the ankle domain of the clathrin triskelion leg was identified that binds a common site on the appendages of tetrameric [AP1 and AP2] and monomeric (GGA1) adaptors. Mutagenesis and modeling studies suggested that the clathrin-GGA1 appendage interface is nonlinear, unlike other peptide-appendage interactions, but overlaps with a sandwich domain binding site for accessory protein peptides, allowing for competitive regulation of coated vesicle formation. A novel clathrin box in the GGA1 hinge region was also identified and shown to mediate membrane recruitment of clathrin, while disruption of the clathrin-GGA1 appendage interaction did not affect recruitment. Thus, the distinct sites for clathrin-adaptor interactions perform distinct functions, revealing new aspects to regulation of CCV formation.
Mesh Terms:
Adaptor Proteins, Vesicular Transport, Animals, Binding Sites, Clathrin, Mice, Models, Molecular, Mutation, NIH 3T3 Cells, Protein Binding, Protein Structure, Quaternary, Protein Structure, Tertiary
Traffic
Date: Dec. 01, 2006
Download Curated Data For This Publication
137599
Switch View:
  • Interactions 7