RNF24, a new TRPC interacting protein, causes the intracellular retention of TRPC.

TRPCs function as cation channels in non-excitable cells. The N-terminal tails of all TRPCs contain an ankyrin-like repeat domain, one of the most common protein-protein interaction motifs. Using a yeast two-hybrid screening approach, we found that RNF24, a new membrane RING-H2 protein, interacted with the ankyrin-like repeat domain of TRPC6. ...
GST pull-down and co-immunoprecipitation assays showed that RNF24 interacted with all TRPCs. Cell surface-labelling assays showed that the expression of TRPC6 at the surface of HEK 293T cells was greatly reduced when it was transiently co-transfected with RNF24. Confocal microscopy showed that TRPC3 and TRPC6 co-localized with RNF24 in a perinuclear compartment and that RNF24 co-localized with mannosidase II, a marker of the Golgi cisternae. Using a pulse-chase approach, we showed that RNF24 did not alter the maturation process of TRPC6. Moreover, in HEK 293T cells, RNF24 did not alter carbachol-induced Ca(2+) entry via endogenous channels or TRPC6. These results indicate that RNF24 interacts with TRPCs in the Golgi apparatus and affects TRPC intracellular trafficking without affecting their activity.
Mesh Terms:
Amino Acid Sequence, Ankyrin Repeat, Carbachol, Carrier Proteins, Cell Line, Cell Membrane, Golgi Apparatus, Humans, Membrane Proteins, Molecular Sequence Data, TRPC Cation Channels
Cell Calcium
Date: May. 01, 2008
Download Curated Data For This Publication
143618
Switch View:
  • Interactions 2