DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway.

Meiotic recombination in the yeast Saccharomyces cerevisiae requires two similar recA-like proteins, Dmc1p and Rad51p. A screen for dominant meiotic mutants provided DMC1-G126D, a dominant allele mutated in the conserved ATP-binding site (specifically, the A-loop motif) that confers a null phenotype. A recessive null allele, dmc1-K69E, was isolated as an ...
intragenic suppressor of DMC1-G126D. Dmc1-K69Ep, unlike Dmc1p, does not interact homotypically in a two-hybrid assay, although it does interact with other fusion proteins identified by two-hybrid screen with Dmc1p. Dmc1p, unlike Rad51p, does not interact in the two-hybrid assay with Rad52p or Rad54p. However, Dmc1p does interact with Tid1p, a Rad54p homologue, with Tid4p, a Rad16p homologue, and with other fusion proteins that do not interact with Rad51p, suggesting that Dmc1p and Rad51p function in separate, though possibly overlapping, recombinational repair complexes. Epistasis analysis suggests that DMC1 and RAD51 function in separate pathways responsible for meiotic recombination. Taken together, our results are consistent with a requirement for DMC1 for meiosis-specific entry of DNA double-strand break ends into chromatin. Interestingly, the pattern on CHEF gels of chromosome fragments that result from meiotic DNA double-strand break formation is different in DMC1 mutant strains from that seen in rad50S strains.
Mesh Terms:
Cell Cycle Proteins, DNA Fragmentation, DNA Repair, DNA-Binding Proteins, Genes, Dominant, Genes, Recessive, Immunohistochemistry, Meiosis, Phenotype, Protein Binding, Rad51 Recombinase, Recombination, Genetic, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins
Genetics
Date: Oct. 01, 1997
Download Curated Data For This Publication
14996
Switch View:
  • Interactions 13