Calcium/calmodulin-dependent protein kinase IV (CaMKIV) enhances osteoclast differentiation via the up-regulation of Notch1 protein stability.

The Notch signaling pathway plays a crucial role in the regulation of cell fate decision, and is also a key regulator of cell differentiation, including bone homeostasis, in a variety of contexts. However, the role of Notch1 signaling in osteoclast differentiation is still controversial. In this study, we show that ...
Receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation is promoted by the Notch1 intracellular domain (Notch1-IC) and Ca(2+)/Calmodulin dependent protein kinase IV (CaMKIV) signaling. Notch1-IC protein level was augmented by CaMKIV through escape from ubiquitin dependent protein degradation. In addition, CaMKIV remarkably increased Notch1-IC stability, and the kinase activity of CaMKIV was essential for facilitating Notch1 signaling. CaMKIV directly interacted with Notch1-IC and phosphorylates Notch1-IC, thereby decreasing proteasomal protein degradation through F-box and WD repeat domain-containing 7 (Fbw7). We also found that Notch1-IC prevented inhibition of osteoclast differentiation by KN-93 but not the phosphorylation deficient form of Notch1-IC. These results suggest that phosphorylated Notch1-IC by CaMKIV increases Notch1-IC stability, which enhances osteoclast differentiation.
Biochim. Biophys. Acta
Date: Jan. 01, 2013
Download Curated Data For This Publication
150121
Switch View:
  • Interactions 5
  • PTM Genes 1