Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.
Protein ubiquitylation has emerged as a key regulatory mechanism in DNA-damage signalling and repair pathways. We report a proteome-wide, site-specific survey of ubiquitylation changes after ultraviolet irradiation, identifying numerous upregulated and downregulated ubiquitylation sites on known components of DNA-damage signalling, as well as on proteins not previously implicated in this ... process. Our results uncover a critical role for PCNA-associated factor PAF15 (p15(PAF)/KIAA0101) ubiquitylation during DNA replication. During unperturbed S phase, chromatin-associated PAF15 is modified by double mono-ubiquitylation of Lys 15 and 24 templated through PCNA binding. Replication blocks trigger rapid, proteasome-dependent removal of Lys 15/24-ubiquitylated PAF15 from PCNA, facilitating bypass of replication-fork-blocking lesions by allowing recruitment of translesion DNA synthesis polymerase polη to mono-ubiquitylated PCNA at stalled replisomes. Our findings demonstrate widespread involvement of ubiquitin signalling in genotoxic-stress responses and identify a critical function for dynamic PAF15 ubiquitylation in safeguarding genome integrity when DNA replication is challenged.
Mesh Terms:
Carrier Proteins, Cell Line, DNA Damage, DNA Repair, DNA Replication, DNA-Directed DNA Polymerase, Humans, Lysine, Proteasome Endopeptidase Complex, S Phase, Signal Transduction, Ubiquitination, Ultraviolet Rays
Carrier Proteins, Cell Line, DNA Damage, DNA Repair, DNA Replication, DNA-Directed DNA Polymerase, Humans, Lysine, Proteasome Endopeptidase Complex, S Phase, Signal Transduction, Ubiquitination, Ultraviolet Rays
Nat. Cell Biol.
Date: Oct. 01, 2012
PubMed ID: 23000965
View in: Pubmed Google Scholar
151333
Switch View:
- PTM Genes 3,204