A new genetic method for isolating functionally interacting genes: high plo1(+)-dependent mutants and their suppressors define genes in mitotic and septation pathways in fission yeast.

We describe a general genetic method to identify genes encoding proteins that functionally interact with and/or are good candidates for downstream targets of a particular gene product. The screen identifies mutants whose growth depends on high levels of expression of that gene. We apply this to the plo1(+) gene that ...
encodes a fission yeast homologue of the polo-like kinases. plo1(+) regulates both spindle formation and septation. We have isolated 17 high plo1(+)-dependent (pld) mutants that show defects in mitosis or septation. Three mutants show a mitotic arrest phenotype. Among the 14 pld mutants with septation defects, 12 mapped to known loci: cdc7, cdc15, cdc11 spg1, and sid2. One of the pld mutants, cdc7-PD1, was selected for suppressor analysis. As multicopy suppressors, we isolated four known genes involved in septation in fission yeast: spg1(+), sce3(+), cdc8(+), and rho1(+), and two previously uncharacterized genes, mpd1(+) and mpd2(+). mpd1(+) exhibits high homology to phosphatidylinositol 4-phosphate 5-kinase, while mpd2(+) resembles Saccharomyces cerevisiae SMY2; both proteins are involved in the regulation of actin-mediated processes. As chromosomal suppressors of cdc7-PD1, we isolated mutations of cdc16 that resulted in multiseptation without nuclear division. cdc16(+), dma1(+), byr3(+), byr4(+) and a truncated form of the cdc7 gene were isolated by complementation of one of these cdc16 mutations. These results demonstrate that screening for high dose-dependent mutants and their suppressors is an effective approach to identify functionally interacting genes.
Mesh Terms:
Amino Acid Sequence, Cell Cycle Proteins, Cell Division, DNA-Binding Proteins, Drosophila Proteins, Genetic Complementation Test, Genetic Techniques, Genotype, Mitosis, Models, Genetic, Molecular Sequence Data, Mutation, Phenotype, Protein-Serine-Threonine Kinases, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Sequence Homology, Amino Acid, Suppression, Genetic, Temperature, Time Factors
Genetics
Date: Aug. 01, 2000
Download Curated Data For This Publication
15353
Switch View:
  • Interactions 27