Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current.

Multiple cell-signaling pathways converge to modulate large-conductance, voltage- and Ca2+-sensitive K+ channel (maxi-K channel) activity and buffer cell excitability in human myometrial smooth muscle cells (hMSMCs). Recent evidence indicates that maxi-K channel proteins can target to membrane microdomains; however, their association with other proteins within these macromolecular complexes has not ...
been elucidated. Biochemical isolation of detergent-resistant membrane fractions from human myometrium demonstrates the presence of maxi-K channels in lipid raft microdomains, which cofractionate with caveolins. In both nonpregnant and late-pregnant myometrium, maxi-K channels associate and colocalize with caveolar scaffolding proteins caveolin-1 and caveolin-2, but not caveolin-3. Disruption of cultured hMSMC caveolar complexes by cholesterol depletion with cyclodextrin increases an iberiotoxin-sensitive K+ current. Co-immunoprecipitations have indicated that the maxi-K channel also is associated with both alpha- and gamma-actin. Immunocytochemical analysis indicates colocalization of maxi-K channels, actin, and caveolin-1 in primary cultures of hMSMCs. Further experiments using immunoelectron microscopy have shown the proximity of both actin and the maxi-K channel within the same cell surface caveolar structures. Functionally, disruption of the actin cytoskeleton in cultured hMSMCs by cytochalasin D and latrunculin A greatly increased the open-state probability of the channel, while stabilization of actin cytoskeleton with jasplakinolide abolished the effect of latrunculin A. These data indicate that the actin cytoskeleton is involved as part of a caveolar complex in the regulation of myometrial maxi-K channel function.
Mesh Terms:
Actins, Caveolae, Caveolin 1, Caveolins, Cytoskeleton, Electric Conductivity, Female, Humans, Ion Channels, Large-Conductance Calcium-Activated Potassium Channels, Muscle, Smooth, Myometrium, Potassium Channels, Calcium-Activated, Pregnancy, Tissue Distribution
Am. J. Physiol., Cell Physiol.
Date: Jul. 01, 2005
Download Curated Data For This Publication
155906
Switch View:
  • Interactions 8