An alpha-tubulin mutant destabilizes the heterodimer: phenotypic consequences and interactions with tubulin-binding proteins.

Many effectors of microtubule assembly in vitro enhance the polymerization of subunits. However, several Saccharomyces cerevisiae genes that affect cellular microtubule-dependent processes appear to act at other steps in assembly and to affect polymerization only indirectly. Here we use a mutant alpha-tubulin to probe cellular regulation of microtubule assembly. tub1-724 ...
mutant cells arrest at low temperature with no assembled microtubules. The results of several assays reported here demonstrate that the heterodimer formed between Tub1-724p and beta-tubulin is less stable than wild-type heterodimer. The unstable heterodimer explains several conditional phenotypes conferred by the mutation. These include the lethality of tub1-724 haploid cells when the beta-tubulin-binding protein Rbl2p is either overexpressed or absent. It also explains why the TUB1/tub1-724 heterozygotes are cold sensitive for growth and why overexpression of Rbl2p rescues that conditional lethality. Both haploid and heterozygous tub1-724 cells are inviable when another microtubule effector, PAC2, is overexpressed. These effects are explained by the ability of Pac2p to bind alpha-tubulin, a complex we demonstrate directly. The results suggest that tubulin-binding proteins can participate in equilibria between the heterodimer and its components.
Mesh Terms:
Cold Temperature, Dimerization, Fungal Proteins, Gene Expression, Heterozygote, Mutation, Phenotype, Precipitin Tests, Protein Binding, Schizosaccharomyces pombe Proteins, Tubulin
Mol. Biol. Cell
Date: Sep. 01, 1998
Download Curated Data For This Publication
15787
Switch View:
  • Interactions 12