The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding.

We have carried out a domain analysis of POL32, the third subunit of Saccharomyces cerevisiae DNA polymerase delta (Pol delta). Interactions with POL31, the second subunit of Pol delta, are specified by the amino-terminal 92 amino acids, whereas interactions with the replication clamp proliferating cell nuclear antigen (PCNA, POL30) reside ...
at the extreme carboxyl-terminal region. Pol32 binding, in vivo and in vitro, to the large subunit of DNA polymerase alpha, POL1, requires the carboxyl-proximal region of Pol32. The amino-terminal region of Pol32 is essential for damage-induced mutagenesis. However, the presence of its carboxyl-terminal PCNA-binding domain enhances the efficiency of mutagenesis, particularly at high loads of DNA damage. In vitro, in the absence of effector DNA, the PCNA-binding domain of Pol32 is essential for PCNA-Pol delta interactions. However, this domain has minimal importance for processive DNA synthesis by the ternary DNA-PCNA-Pol delta complex. Rather, processivity is determined by PCNA-binding domains located in the Pol3 and/or Pol31 subunits. Using diagnostic PCNA mutants, we show that during DNA synthesis the carboxyl-terminal domain of Pol32 interacts with the carboxyl-terminal region of PCNA, whereas interactions of the other subunit(s) of Pol delta localize largely to a hydrophobic pocket at the interdomain connector loop region of PCNA.
Mesh Terms:
Alleles, Binding Sites, DNA Polymerase I, DNA Polymerase III, DNA Replication, Phenotype, Proliferating Cell Nuclear Antigen, Protein Subunits, Saccharomyces cerevisiae Proteins
J. Biol. Chem.
Date: Jan. 16, 2004
Download Curated Data For This Publication
15806
Switch View:
  • Interactions 6