BCL2 and CASP8 regulation by NF-kappaB differentially affect mitochondrial function and cell fate in antiestrogen-sensitive and -resistant breast cancer cells.
Resistance to endocrine therapies remains a major problem in the management of estrogen receptor-alpha (ER)-positive breast cancer. We show that inhibition of NF-kappaB (p65/RELA), either by overexpression of a mutant IkappaB (IkappaBSR) or a small-molecule inhibitor of NF-kappaB (parthenolide; IC(50)=500 nM in tamoxifen-resistant cells), synergistically restores sensitivity to 4-hydroxytamoxifen (4HT) ... in resistant MCF7/RR and MCF7/LCC9 cells and further sensitizes MCF-7 and MCF7/LCC1 control cells to 4HT. These effects are independent of changes in either cell cycle distribution or in the level of autophagy measured by inhibition of p62/SQSTM1 expression and cleavage of LC3. NF-kappaB inhibition restores the ability of 4HT to decrease BCL2 expression, increase mitochondrial membrane permeability, and induce a caspase-dependent apoptotic cell death in resistant cells. Each of these effects is reversed by a caspase 8 (CASP8)-specific inhibitor that blocks enzyme-substrate binding. Thus, increased activation of NF-kappaB can alter sensitivity to tamoxifen by modulating CASP8 activity, with consequent effects on BCL2 expression, mitochondrial function, and apoptosis. These data provide significant new insights into how molecular signaling affects antiestrogen responsiveness and strongly suggest that a combination of parthenolide and tamoxifen may offer a novel therapeutic approach to the management of some ER-positive breast cancers.
Mesh Terms:
Adaptor Proteins, Signal Transducing, Apoptosis, Autophagy, Blotting, Western, Breast Neoplasms, Caspase 8, Cell Cycle, Cell Line, Tumor, Cell Membrane Permeability, Cell Proliferation, Drug Resistance, Neoplasm, Estrogen Antagonists, Estrogen Receptor alpha, Female, Gene Expression Regulation, Neoplastic, Humans, Immunoprecipitation, Luciferases, Membrane Potential, Mitochondrial, Mitochondria, NF-kappa B, Proto-Oncogene Proteins c-bcl-2, RNA, Messenger, RNA, Small Interfering, RNA-Binding Proteins, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction, Tamoxifen
Adaptor Proteins, Signal Transducing, Apoptosis, Autophagy, Blotting, Western, Breast Neoplasms, Caspase 8, Cell Cycle, Cell Line, Tumor, Cell Membrane Permeability, Cell Proliferation, Drug Resistance, Neoplasm, Estrogen Antagonists, Estrogen Receptor alpha, Female, Gene Expression Regulation, Neoplastic, Humans, Immunoprecipitation, Luciferases, Membrane Potential, Mitochondrial, Mitochondria, NF-kappa B, Proto-Oncogene Proteins c-bcl-2, RNA, Messenger, RNA, Small Interfering, RNA-Binding Proteins, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction, Tamoxifen
FASEB J.
Date: Jun. 01, 2010
PubMed ID: 20154269
View in: Pubmed Google Scholar
Download Curated Data For This Publication
158465
Switch View:
- Interactions 2