MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins.
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process necessary for normal recycling of cellular constituents and for appropriate response to cellular stress. Although several genes belonging to the core molecular machinery involved in autophagosome formation have been discovered, relatively little is known about the nature of ... signaling networks controlling autophagy upon intracellular or extracellular stimuli. We discovered ATG8-like proteins (MAP1LC3B, GABARAP and GABARAPL1) as novel interactors of MAPK15/ERK8, a MAP kinase involved in cell proliferation and transformation. Based on the role of these proteins in the autophagic process, we demonstrated that MAPK15 is indeed localized to autophagic compartments and increased, in a kinase-dependent fashion, ATG8-like proteins lipidation, autophagosome formation and SQSTM1 degradation, while decreasing LC3B inhibitory phosphorylation. Interestingly, we also identified a conserved LC3-interacting region (LIR) in MAPK15 responsible for its interaction with ATG8-like proteins, for its localization to autophagic structures and, consequently, for stimulation of the formation of these compartments. Furthermore, we reveal that MAPK15 activity was induced in response to serum and amino-acid starvation and that this stimulus, in turn, required endogenous MAPK15 expression to induce the autophagic process. Altogether, these results suggested a new function for MAPK15 as a regulator of autophagy, acting through interaction with ATG8 family proteins. Also, based on the key role of this process in several human diseases, these results supported the use of this MAP kinase as a potential novel therapeutic target.
Mesh Terms:
Adaptor Proteins, Signal Transducing, Amino Acid Sequence, Animals, Autophagy, Biocatalysis, Cytoskeletal Proteins, Extracellular Signal-Regulated MAP Kinases, HeLa Cells, Heat-Shock Proteins, Humans, Membrane Proteins, Mice, Microtubule-Associated Proteins, Models, Biological, Molecular Sequence Data, Phosphorylation, Protein Binding, Protein Structure, Tertiary, Protein Transport, Proteolysis
Adaptor Proteins, Signal Transducing, Amino Acid Sequence, Animals, Autophagy, Biocatalysis, Cytoskeletal Proteins, Extracellular Signal-Regulated MAP Kinases, HeLa Cells, Heat-Shock Proteins, Humans, Membrane Proteins, Mice, Microtubule-Associated Proteins, Models, Biological, Molecular Sequence Data, Phosphorylation, Protein Binding, Protein Structure, Tertiary, Protein Transport, Proteolysis
Autophagy
Date: Dec. 01, 2012
PubMed ID: 22948227
View in: Pubmed Google Scholar
Download Curated Data For This Publication
158564
Switch View:
- Interactions 8