SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex.

SARS coronavirus (SARS-CoV) develops an antagonistic mechanism by which to evade the antiviral activities of interferon (IFN). Previous studies suggested that SARS-CoV papain-like protease (PLpro) inhibits activation of the IRF3 pathway, which would normally elicit a robust IFN response, but the mechanism(s) used by SARS PLpro to inhibit activation of ...
the IRF3 pathway is not fully known. In this study, we uncovered a novel mechanism that may explain how SARS PLpro efficiently inhibits activation of the IRF3 pathway. We found that expression of the membrane-anchored PLpro domain (PLpro-TM) from SARS-CoV inhibits STING/TBK1/IKKε-mediated activation of type I IFNs and disrupts the phosphorylation and dimerization of IRF3, which are activated by STING and TBK1. Meanwhile, we showed that PLpro-TM physically interacts with TRAF3, TBK1, IKKε, STING, and IRF3, the key components that assemble the STING-TRAF3-TBK1 complex for activation of IFN expression. However, the interaction between the components in STING-TRAF3-TBK1 complex is disrupted by PLpro-TM. Furthermore, SARS PLpro-TM reduces the levels of ubiquitinated forms of RIG-I, STING, TRAF3, TBK1, and IRF3 in the STING-TRAF3-TBK1 complex. These results collectively point to a new mechanism used by SARS-CoV through which PLpro negatively regulates IRF3 activation by interaction with STING-TRAF3-TBK1 complex, yielding a SARS-CoV countermeasure against host innate immunity.
Protein Cell
Date: Mar. 14, 2014
Download Curated Data For This Publication
163597
Switch View:
  • Interactions 12
  • PTM Genes 5