A Cellular System that Degrades Misfolded Proteins and Protects against Neurodegeneration.
Misfolded proteins compromise cellular function and cause disease. How these proteins are detected and degraded is not well understood. Here we show that PML/TRIM19 and the SUMO-dependent ubiquitin ligase RNF4 act together to promote the degradation of misfolded proteins in the mammalian cell nucleus. PML selectively interacts with misfolded proteins ... through distinct substrate recognition sites and conjugates these proteins with the small ubiquitin-like modifiers (SUMOs) through its SUMO ligase activity. SUMOylated misfolded proteins are then recognized and ubiquitinated by RNF4 and are subsequently targeted for proteasomal degradation. We further show that PML deficiency exacerbates polyglutamine (polyQ) disease in a mouse model of spinocerebellar ataxia 1 (SCA1). These findings reveal a mammalian system that removes misfolded proteins through sequential SUMOylation and ubiquitination and define its role in protection against protein-misfolding diseases.
Mol. Cell
Date: May. 28, 2014
PubMed ID: 24882209
View in: Pubmed Google Scholar
Download Curated Data For This Publication
165588
Switch View:
- Interactions 12
- PTM Genes 3