MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC.

Multiple myeloma (MM) represents the malignant proliferation of terminally differentiated B cells, which, in many cases, is associated with the maintenance of high levels of the oncoprotein c-MYC. Overexpression of the histone methyltransferase MMSET (WHSC1/NSD2), due to t(4;14) chromosomal translocation, promotes the proliferation of MM cells along with global changes in chromatin; nevertheless, the precise mechanisms by which MMSET stimulates neoplasia remain incompletely understood. We found that MMSET enhances the proliferation of MM cells by stimulating the expression of c-MYC at the post-transcriptional level. A microRNA (miRNA) profiling experiment in t(4;14) MM cells identified miR-126* as an MMSET-regulated miRNA predicted to target c-MYC mRNA. We show that miR-126* specifically targets the 3'-untranslated region (3'-UTR) of c-MYC, inhibiting its translation and leading to decreased c-MYC protein levels. Moreover, the expression of this miRNA was sufficient to decrease the proliferation rate of t(4;14) MM cells. Chromatin immunoprecipitation analysis showed that MMSET binds to the miR-126* promoter along with the KAP1 corepressor and histone deacetylases, and is associated with heterochromatic modifications, characterized by increased trimethylation of H3K9 and decreased H3 acetylation, leading to miR-126* repression. Collectively, this study shows a novel mechanism that leads to increased c-MYC levels and enhanced proliferation of t(4;14) MM, and potentially other cancers with high MMSET expression.
Mesh Terms:
Apoptosis, Blotting, Western, Cell Proliferation, Chromatin Immunoprecipitation, Gene Expression Regulation, Neoplastic, Histone-Lysine N-Methyltransferase, Humans, Immunoprecipitation, MicroRNAs, Multiple Myeloma, Proto-Oncogene Proteins c-myc, RNA, Messenger, RNA, Small Interfering, Real-Time Polymerase Chain Reaction, Repressor Proteins, Reverse Transcriptase Polymerase Chain Reaction, Tumor Cells, Cultured
Leukemia Mar. 01, 2013; 27(3);686-94 [PUBMED:22972034]
Download 2 Interactions For This Publication
Switch View:
  • Interactions (2)