csi2p modulates microtubule dynamics and organizes the bipolar spindle for chromosome segregation.

Proper chromosome segregation is of paramount importance for proper genetic inheritance. Defects in chromosome segregation can lead to aneuploidy, which is a hallmark of cancer cells. Eukaryotic chromosome segregation is accomplished by the bipolar spindle. Additional mechanisms such as the spindle assembly checkpoint and centromere positioning further help to ensure ...
complete segregation fidelity. We present here the fission yeast csi2(+). csi2p localizes to the spindle poles, where it regulates mitotic microtubule dynamics, bipolar spindle formation, and subsequent chromosome segregation. csi2-deletion (csi2Δ) results in abnormally long mitotic microtubules, high rate of transient monopolar spindles, and a subsequent high rate of chromosome segregation defects. As csi2Δ has multiple phenotypes, it enables estimates of the relative contribution of the different mechanisms to the overall chromosome segregation process. Centromere positioning, microtubule dynamics, and bipolar spindle formation can all contribute to chromosome segregation. However, the major determinant of chromosome segregation defects in fission yeast may be microtubule dynamic defects.
Mol. Biol. Cell
Date: Sep. 24, 2014
Download Curated Data For This Publication
168261
Switch View:
  • Interactions 3