Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid.
DNA double-strand breaks (DSBs) are harmful lesions that arise mainly during replication. The choice of the sister chromatid as the preferential repair template is critical for genome integrity, but the mechanisms that guarantee this choice are unknown. Here we identify new genes with a specific role in assuring the sister ... chromatid as the preferred repair template. Physical analyses of sister chromatid recombination (SCR) in 28 selected mutants that increase Rad52 foci and inter-homolog recombination uncovered 8 new genes required for SCR. These include the SUMO/Ub-SUMO protease Wss1, the stress-response proteins Bud27 and Pdr10, the ADA histone acetyl-transferase complex proteins Ahc1 and Ada2, as well as the Hst3 and Hst4 histone deacetylase and the Rtt109 histone acetyl-transferase genes, whose target is histone H3 Lysine 56 (H3K56). Importantly, we use mutations in H3K56 residue to A, R, and Q to reveal that H3K56 acetylation/deacetylation is critical to promote SCR as the major repair mechanism for replication-born DSBs. The same phenotype is observed for a particular class of rad52 alleles, represented by rad52-C180A, with a DSB repair defect but a spontaneous hyper-recombination phenotype. We propose that specific Rad52 residues, as well as the histone H3 acetylation/deacetylation state of chromatin and other specific factors, play an important role in identifying the sister as the choice template for the repair of replication-born DSBs. Our work demonstrates the existence of specific functions to guarantee SCR as the main repair event for replication-born DSBs that can occur by two pathways, one Rad51-dependent and the other Pol32-dependent. A dysfunction can lead to genome instability as manifested by high levels of homolog recombination and DSB accumulation.
Mesh Terms:
Acetylation, Chromatids, DNA Breaks, Double-Stranded, DNA Repair, DNA Replication, DNA-Directed DNA Polymerase, Genomic Instability, Histone-Lysine N-Methyltransferase, Histones, Humans, Rad51 Recombinase, Rad52 DNA Repair and Recombination Protein, Recombination, Genetic, SUMO-1 Protein, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sister Chromatid Exchange, Ubiquitin
Acetylation, Chromatids, DNA Breaks, Double-Stranded, DNA Repair, DNA Replication, DNA-Directed DNA Polymerase, Genomic Instability, Histone-Lysine N-Methyltransferase, Histones, Humans, Rad51 Recombinase, Rad52 DNA Repair and Recombination Protein, Recombination, Genetic, SUMO-1 Protein, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sister Chromatid Exchange, Ubiquitin
PLoS Genet.
Date: Jan. 30, 2013
PubMed ID: 23357952
View in: Pubmed Google Scholar
Download Curated Data For This Publication
169288
Switch View:
- Interactions 2