Progression into the first meiotic division is sensitive to histone H2A-H2B dimer concentration in Saccharomyces cerevisiae.

The yeast Saccharomyces cerevisiae contains two genes for histone H2A and two for histone H2B located in two divergently transcribed gene pairs: HTA1-HTB1 and HTA2-HTB2. Diploid strains lacking HTA1-HTB1 (hta1-htb1 delta/hta1-htb1 delta, HTA2-HTB2/HTA2-HTB2) grow vegetatively, but will not sporulate. This sporulation phenotype results from a partial depletion of H2A-H2B dimers. ...
Since the expression patterns of HTA1-HTB1 and HTA2-HTB2 are similar in mitosis and meiosis, the sporulation pathway is therefore more sensitive than the mitotic cycle to depletion of H2A-H2B dimers. After completing premeiotic DNA replication, commitment to meiotic recombination, and chiasma resolution, the hta1-htb1 delta/hta1-htb1 delta, HTA2-HTB2/HTA2-HTB2 mutant arrests before the first meiotic division. The arrest is not due to any obvious disruptions in spindle pole bodies or microtubules. The meiotic block is not bypassed in backgrounds homozygous for spo13, rad50 delta, or rad9 delta mutations, but is bypassed in the presence of hydroxyurea, a drug known to inhibit DNA chain elongation. We hypothesize that the deposition of H2A-H2B dimers in the mutant is unable to keep pace with the replication fork, thereby leading to a disruption in chromosome structure that interferes with the meiotic divisions.
Mesh Terms:
Histones, Meiosis, Mitosis, Mutation, Saccharomyces cerevisiae, Spores, Fungal
Genetics
Date: Mar. 01, 1997
Download Curated Data For This Publication
17164
Switch View:
  • Interactions 1