A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59.

With the use of an intrachromosomal inverted repeat as a recombination reporter, we have shown that mitotic recombination is dependent on the RAD52 gene, but reduced only fivefold by mutation of RAD51. RAD59, a component of the RAD51-independent pathway, was identified previously by screening for mutations that reduced inverted-repeat recombination ...
in a rad51 strain. Here we describe a rad52 mutation, rad52R70K, that also reduced recombination synergistically in a rad51 background. The phenotype of the rad52R70K strain, which includes weak gamma-ray sensitivity, a fourfold reduction in the rate of inverted-repeat recombination, elevated allelic recombination, sporulation proficiency, and a reduction in the efficiency of mating-type switching and single-strand annealing, was similar to that observed for deletion of the RAD59 gene. However, rad52R70K rad59 double mutants showed synergistic defects in ionizing radiation resistance, sporulation, and mating-type switching. These results suggest that Rad52 and Rad59 have partially overlapping functions and that Rad59 can substitute for this function of Rad52 in a RAD51 rad52R70K strain.
Mesh Terms:
Alleles, Amino Acid Substitution, DNA Repair, DNA-Binding Proteins, Fungal Proteins, Gamma Rays, Genotype, Mutagenesis, Site-Directed, Point Mutation, Polymerase Chain Reaction, Rad51 Recombinase, Rad52 DNA Repair and Recombination Protein, Recombination, Genetic, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Suppression, Genetic
Genetics
Date: Nov. 01, 1999
Download Curated Data For This Publication
17290
Switch View:
  • Interactions 2