Regulation of cardiac contractility by Rab4-modulated beta2-adrenergic receptor recycling.

Heart and Vascular Center, University of Cincinnati, Cincinnati, OH 45267, USA.
Catecholaminergic activation of myocardial beta-adrenergic receptors (betaAR) is the principle mechanism regulating cardiac function. Agonists desensitize betaAR through G protein-coupled receptor kinase-mediated uncoupling and beta-arrestin-mediated internalization. Although inhibition of myocardial G protein-coupled receptor kinase-2 enhances cardiac function and reverses heart failure, pathophysiological effects of modulated betaAR internalization/recycling are unknown. We used mutation and transgenic expression of Rab4, which regulates vesicular transport of heptahelical receptors to plasma membranes, to interrogate in vivo betaAR trafficking and cardiac function. Expression of constitutively active Rab4 Q72L had no effects on cardiac structure or function, but dominant inhibitor Rab4 S27N impaired responsiveness to endogenous and exogenous catecholamines. To relate betaAR trafficking to diminished cardiac function, Rab4 mutant mice were crossbred with mice overexpressing human beta2AR. In unstimulated beta2AR overexpressors, beta2AR localized to heavier endosomes and translocated to lighter, caveolin-rich fractions after isoproterenol stimulation. Coexpression of beta2AR with activated Rab4 Q72L caused loss of receptors from heavier endosomes while retaining normal inotropy. In contrast, coexpression of beta2AR with inhibitory Rab4 S27N mimicked isoproterenol-induced receptor redistribution to caveolae, with diminished cardiac inotropy. Rab4 inhibition alone prevented resensitization after isoproterenol-induced in vivo adrenergic desensitization. Confocal and ultrastructural analyses revealed bizarre vesicular structures and abnormal accumulation of beta2AR in the sarcoplasm and subsarcollema of Rab4 S27N, but not Q72L, mice. These data provide evidence for constant bidirectional sarcollemal-vesicular betaAR trafficking in the in vivo heart and show that Rab4-mediated recycling of internalized betaAR is necessary for normal cardiac catecholamine responsiveness and resensitization after agonist exposure.
Mesh Terms:
Adrenergic beta-2 Receptor Agonists, Animals, Mice, Mice, Transgenic, Myocardial Contraction, Myocardium, Receptors, Adrenergic, beta-2, rab4 GTP-Binding Proteins
Proc. Natl. Acad. Sci. U.S.A. May. 04, 2004; 101(18);7082-7 [PUBMED:15105445]
Switch View:
  • Chemicals (1)