Opiate receptor subtypes in the rat hypothalamus and neurointermediate lobe.
The potent opiate radioligands [3H]etorphine, [3H]ethylketocyclazocine (EKC), and [3H]naloxone, bound specifically and saturably to a single class of membrane-binding sites in rat neurointermediate lobe (NIL), with Kd values of 3.7, 24, and 51 nM, respectively. In the hypothalamus (Ht), [3H]etorphine bound to specific and saturable sites with a Kd of ... 2.9 nM. Binding-inhibition studies with [3H]etorphine and unlabeled etorphine-HCl as well as [3H]EKC and unlabeled EKC, revealed high and low affinity binding sites in rat Ht and NIL as well as in the neural lobe of the bovine pituitary gland. [3H]naloxone also bound specifically to two classes of sites in Ht membranes, but to only a single class of low affinity sites in NIL membranes. Specific binding represented 80-90% of total [3H]etorphine binding, about 75% of total [3H]EKC binding, and 45-55% of total [3H]naloxone binding at 22 C in NIL and Ht, respectively. Relative binding potencies derived from Ki values for binding-inhibition studies of [3H]etorphine with opioid peptides and opiates were: NIL, etorphine-HCl greater than dynorphin A greater than naloxone-HCl greater than dynorphin-(1-9) greater than beta-endorphin much greater than alpha-neoendorphin approximately (Leu5)enkephalin approximately DAGO (Tyr-D-Ala-Gly-NMe-Phe-Gly-ol); Ht, etorphine HCl greater than naloxone-HCl greater than beta-endorphin greater than dynorphin A much greater than DAGO greater than morphiceptin much greater than (Leu5)enkephalin. Specific [3H]etorphine binding was also demonstrable after preincubation of NIL membranes with DAGO and (Leu5)enkephalin and after preincubation of Ht membranes with morphiceptin and (Leu5)enkephalin; such binding could be displaced by nonradioactive dynorphin A. In addition, [3H]etorphine binding to bovine neural lobe was displaceable by naloxone-HCl, with an ED50 of 43 nM. Specific ligands for sigma-opiate receptors, such as (+)SKF 10,047 (N-allylnorcyclazocine), phencyclidine (PCP), and (-)cyclazocine, displaced specifically bound [3H]etorphine and [3H]EKC from NIL membranes only at high (micromolar) concentrations. However, specific [3H]PCP sites were of higher affinity in NIL and Ht membranes, with similar Kd values of 102 and 190 nM respectively, and different concentrations (0.15 and 1.32 pmol/mg protein, respectively). These data have revealed several differences in the opiate-binding properties of rat Ht and NIL membranes.(ABSTRACT TRUNCATED AT 400 WORDS)
Mesh Terms:
Animals, Binding, Competitive, Cyclazocine, Ethylketocyclazocine, Etorphine, Female, Hypothalamus, Kinetics, Naloxone, Phencyclidine, Pituitary Gland, Rats, Rats, Inbred Strains, Receptors, Opioid, Temperature
Animals, Binding, Competitive, Cyclazocine, Ethylketocyclazocine, Etorphine, Female, Hypothalamus, Kinetics, Naloxone, Phencyclidine, Pituitary Gland, Rats, Rats, Inbred Strains, Receptors, Opioid, Temperature
Endocrinology
Date: Jul. 01, 1987
PubMed ID: 3036471
View in: Pubmed Google Scholar
Download Curated Data For This Publication
181472
Switch View:
- Chemical Interactions 1