Protein array based interactome analysis of amyloid-β indicates an inhibition of protein translation.

Oligomeric amyloid-β is currently of interest in amyloid-β mediated toxicity and the pathogenesis of Alzheimer's disease. Mapping the amyloid-β interaction partners could help to discover novel pathways in disease pathogenesis. To discover the amyloid-β interaction partners, we applied a protein array with more than 8100 unique recombinantly expressed human proteins. ...
We identified 324 proteins as potential interactors of oligomeric amyloid-β. The Gene Ontology functional analysis of these proteins showed that oligomeric amyloid-β bound to multiple proteins with diverse functions both from extra and intracellular localizations. This undiscriminating binding phenotype indicates that multiple protein interactions mediate the toxicity of the oligomeric amyloid-β. The most highly impacted cellular system was the protein translation machinery. Oligomeric amyloid-β could bind to altogether 24 proteins involved in translation initiation and elongation. The binding of amyloid-β to purified rat hippocampal ribosomes validated the protein array results. More importantly, in vitro translation assays showed that the oligomeric amyloid-β had a concentration dependent inhibitory activity on translation. Our results indicate that the inhibited protein synthesis is one of the pathways that can be involved in the amyloid-beta induced neurotoxicity.
Mesh Terms:
Amyloid beta-Peptides, Animals, Humans, Protein Array Analysis, Protein Binding, Protein Biosynthesis, Protein Interaction Mapping, Protein Multimerization, Proteome, Rats, Ribosomes
J. Proteome Res.
Date: Apr. 01, 2011
Download Curated Data For This Publication
188411
Switch View:
  • Interactions 304