Huntingtin functions as a scaffold for selective macroautophagy.

Selective macroautophagy is an important protective mechanism against diverse cellular stresses. In contrast to the well-characterized starvation-induced autophagy, the regulation of selective autophagy is largely unknown. Here, we demonstrate that Huntingtin, the Huntington disease gene product, functions as a scaffold protein for selective macroautophagy but it is dispensable for non-selective ...
macroautophagy. In Drosophila, Huntingtin genetically interacts with autophagy pathway components. In mammalian cells, Huntingtin physically interacts with the autophagy cargo receptor p62 to facilitate its association with the integral autophagosome component LC3 and with Lys-63-linked ubiquitin-modified substrates. Maximal activation of selective autophagy during stress is attained by the ability of Huntingtin to bind ULK1, a kinase that initiates autophagy, which releases ULK1 from negative regulation by mTOR. Our data uncover an important physiological function of Huntingtin and provide a missing link in the activation of selective macroautophagy in metazoans.
Mesh Terms:
Animals, Autophagy, Drosophila melanogaster, Gene Expression Regulation, HEK293 Cells, HeLa Cells, Humans, Intracellular Signaling Peptides and Proteins, Microtubule-Associated Proteins, Nerve Tissue Proteins, Phagosomes, Protein Binding, Protein-Serine-Threonine Kinases, RNA-Binding Proteins, Signal Transduction, TOR Serine-Threonine Kinases, Ubiquitin, Ubiquitination
Nat. Cell Biol.
Date: Mar. 01, 2015
Download Curated Data For This Publication
188469
Switch View:
  • Interactions 22