Regulation of temperature-responsive flowering by MADS-box transcription factor repressors.
Changes in ambient temperature affect flowering time in plants; understanding this phenomenon will be crucial for buffering agricultural systems from the effects of climate change. Here, we show that levels of FLM-β, an alternatively spliced form of the flowering repressor FLOWERING LOCUS M, increase at lower temperatures, repressing flowering. FLM-β ... interacts with SHORT VEGETATIVE PHASE (SVP); SVP is degraded at high temperatures, reducing the abundance of the SVP-FLM-β repressor complex and, thus, allowing the plant to flower. The svp and flm mutants show temperature-insensitive flowering in different temperature ranges. Control of SVP-FLM-β repressor complex abundance via transcriptional and splicing regulation of FLM and posttranslational regulation of SVP protein stability provides an efficient, rapid mechanism for plants to respond to ambient temperature changes.
Mesh Terms:
Alternative Splicing, Arabidopsis, Arabidopsis Proteins, Flowers, Gene Expression Regulation, Plant, MADS Domain Proteins, Molecular Sequence Data, Mutation, Repressor Proteins, Temperature, Transcription Factors
Alternative Splicing, Arabidopsis, Arabidopsis Proteins, Flowers, Gene Expression Regulation, Plant, MADS Domain Proteins, Molecular Sequence Data, Mutation, Repressor Proteins, Temperature, Transcription Factors
Science
Date: Nov. 01, 2013
PubMed ID: 24030492
View in: Pubmed Google Scholar
Download Curated Data For This Publication
189895
Switch View:
- Interactions 3