Univalent cation fluxes in yeast.

Transport of H+, K+, Rb+ and Tl+ ions was studied in a wild-type strain of Saccharomyces cerevisiae and in its mutants defective in the high-affinity K+ transport system TRK1 and in the double mutant with an additional deletion in the TRK2 gene. In the absence of glucose K+, Rb+ and ...
Tl+ elicited a more or less stoichiometric exchange outflow of H+, in the mutants K+ moved out of cells even in the presence of 10 mM KCl or KNO3. In the presence of glucose in the wild type, K+, Rb+ and Tl+ brought about a massive outflow of H+ while being transported inward against high concentration gradients. In the trk1 delta mutant the exchange fluxes were reduced by 65-85%, in the double mutant those of K+, Rb+ and Tl+ practically cease but outflow of H+ caused by Tl+ remained at the level of the trk1 delta mutant. It appears that, in addition to the H+ export by the PMA1-coded plasma membrane H(+)-ATPase, at least three different univalent-cation involving activities are present: the high-affinity transport system for K+ (TRK1), another system (possibly TRK2) with different responses to K+ and Rb+, vs. Tl+, and an active system for K+ export. The first two are apparently active exchange systems for K+, Rb+, and Tl+ against H+. The source of energy for these highly active transports (acting against gradients of 1000:1 and 5000:1, respectively) is unclear.
Mesh Terms:
Carrier Proteins, Cation Transport Proteins, Cations, Monovalent, Enzyme Inhibitors, Fungal Proteins, Glucose, Ion Transport, Membrane Proteins, Mutation, Potassium, Proton-Translocating ATPases, Protons, Rubidium, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Thallium
Biochem. Mol. Biol. Int.
Date: Feb. 01, 1998
Download Curated Data For This Publication
19198
Switch View:
  • Interactions 1