Coordinated Ribosomal ITS2 RNA Processing by the Las1 Complex Integrating Endonuclease, Polynucleotide Kinase, and Exonuclease Activities.

The rapidly evolving internal transcribed spacer 2 (ITS2) in the pre-ribosomal RNA is one of the most commonly applied phylogenetic markers at species and genus level. Yet, during ribosome biogenesis ITS2 is removed in all eukaryotes by a common, but still unknown, mechanism. Here we describe the existence of an ...
RNA processome, assembled from four conserved subunits, Las1-Grc3-Rat1-Rai1, that carries all the necessary RNA processing enzymes to mediate coordinated ITS2 rRNA removal. Las1 is the long-sought-after endonuclease cleaving 27SB pre-rRNA at site C2 to yield a 5'-OH end at the 26S pre-rRNA and 2',3' cyclic phosphate at the 3' end of 7S pre-rRNA. Subsequently, polynucleotide kinase Grc3 catalyzes ATP-dependent 5'-OH phosphorylation of 26S pre-rRNA, which in turn enables Rat1-Rai1 exonuclease to generate 25S' pre-rRNA. ITS2 processing is reminiscent of tRNA splicing, but instead of subsequent tRNA ligation, the Las1 complex carries along an exonuclease tool to degrade the ITS2 rRNA.
Mesh Terms:
DNA, Ribosomal Spacer, Exoribonucleases, Multiprotein Complexes, Nuclear Proteins, RNA, Fungal, RNA, Ribosomal, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins
Mol. Cell
Date: Dec. 03, 2015
Download Curated Data For This Publication
193050
Switch View:
  • Interactions 11