Trs33-containing TRAPP IV: A Novel Autophagy-Specific Ypt1 GEF.

Ypt/Rab GTPases, key regulators of intracellular trafficking pathways, are activated by guanine-nucleotide exchange factors (GEFs). Here, we identify a novel GEF complex, TRAPP IV, which regulates Ypt1-mediated autophagy. In the yeast Saccharomyces cerevisiae, Ypt1 GTPase is required for the initiation of secretion and autophagy, suggesting that it regulates these two ...
distinct pathways. However, whether these pathways are coordinated by Ypt1 and by what mechanism, is still unknown. TRAPP is a conserved modular complex that acts as a Ypt/Rab GEF. Two different TRAPP complexes, TRAPP I and the Trs85-containing TRAPP III, activate Ypt1 in the secretory and autophagic pathways, respectively. Importantly, whereas TRAPP I depletion copies Ypt1 deficiency in secretion, depletion of TRAPP III does not fully copy the autophagy phenotypes of autophagy-specific ypt1 mutations. If GEFs are required for Ypt/Rab function, this discrepancy implies the existence of an additional GEF that activates Ypt1 in autophagy. Trs33, a non-essential TRAPP subunit, was assigned to TRAPP I without functional evidence. We show that in the absence of Trs85, Trs33 is required for Ypt1-mediated autophagy and for the recruitment of core-TRAPP and Ypt1 to the pre-autophagosomal structure, which marks the onset of autophagy. In addition, Trs33 and Trs85 assemble into distinct TRAPP complexes, and we term the Trs33-containing autophagy-specific complex TRAPP IV. Because TRAPP I is required for Ypt1-mediated secretion, and either TRAPP III or TRAPP IV is required for Ypt1-mediated autophagy, we propose that pathway-specific GEFs activate Ypt1 in secretion and autophagy.
Date: Sep. 26, 2016
Download Curated Data For This Publication
Switch View:
  • Interactions 9