Investigation of the molecular mechanism of δ-catenin ubiquitination: Implication of β-TrCP-1 as a potential E3 ligase.

Ubiquitination, a post-translational modification, involves the covalent attachment of ubiquitin to the target protein. The ubiquitin-proteasome pathway and the endosome-lysosome pathway control the degradation of the majority of eukaryotic proteins. Our previous study illustrated that δ-catenin ubiquitination occurs in a glycogen synthase kinase-3 (GSK-3) phosphorylation-dependent manner. However, the molecular mechanism ...
of δ-catenin ubiquitination is still unknown. Here, we show that the lysine residues required for ubiquitination are located mainly in the C-terminal portion of δ-catenin. In addition, we provide evidence that β-TrCP-1 interacts with δ-catenin and functions as an E3 ligase, mediating δ-catenin ubiquitin-proteasome degradation. Furthermore, we prove that both the ubiquitin-proteasome pathway and the lysosome degradation pathway are involved in δ-catenin degradation. Our novel findings on the mechanism of δ-catenin ubiquitination will add a new perspective to δ-catenin degradation and the effects of δ-catenin on E-cadherin involved in epithelial cell-cell adhesion, which is implicated in prostate cancer progression.
Biochim. Biophys. Acta
Date: Sep. 01, 2016
Download Curated Data For This Publication
199145
Switch View:
  • Interactions 4