Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations.

BACKGROUND: DNA polymerase epsilon (Pol epsilon) is essential for S-phase replication, DNA damage repair and checkpoint control in yeast. A pol2-Y831A mutation leading to a tyrosine to alanine change in the Pol epsilon active site does not cause growth defects and confers a mutator phenotype that is normally subtle but ...
strong in a mismatch repair-deficient strain. Here we investigate the mechanism responsible for the mutator effect. RESULTS: Purified four-subunit Y831A Pol epsilon turns over more deoxynucleoside triphosphates to deoxynucleoside monophosphates than does wild-type Pol epsilon, suggesting altered coordination between the polymerase and exonuclease active sites. The pol2-Y831A mutation suppresses the mutator effect of the pol2-4 mutation in the exonuclease active site that abolishes proofreading by Pol epsilon, as measured in haploid strain with the pol2-Y831A,4 double mutation. Analysis of mutation rates in diploid strains reveals that the pol2-Y831A allele is recessive to pol2-4. In addition, the mutation rates of strains with the pol2-4 mutation in combination with active site mutator mutations in Pol delta and Pol alpha suggest that Pol epsilon may proofread certain errors made by Pol alpha and Pol delta during replication in vivo. CONCLUSIONS: Our data suggest that Y831A replacement in Pol epsilon reduces replication fidelity and its participation in chromosomal replication, but without eliminating an additional function that is essential for viability. This suggests that other polymerases can substitute for certain functions of polymerase epsilon.
Mesh Terms:
Binding Sites, Cell Survival, DNA Polymerase I, DNA Polymerase II, DNA Polymerase III, Exonucleases, Models, Genetic, Point Mutation, Saccharomyces cerevisiae
BMC Biol.
Date: May. 28, 2004
Download Curated Data For This Publication
20004
Switch View:
  • Interactions 6