Regulation of phospholipid biosynthesis by phosphatidylinositol transfer protein Sec14p and its homologues. A critical role for phosphatidic acid.

Transcription of yeast phospholipid biosynthesis structural genes, which contain an inositol-sensitive upstream activating sequence in their promoters, responds to the availability of the soluble precursors inositol and choline and to changes in phospholipid metabolism. The INO1 gene is deregulated (derepressed when inositol is present) under the conditions of increased phosphatidylcholine ...
(PtdCho) turnover, as occurs in the sec14Delta cki1Delta strain (SEC14 encodes the major yeast phosphatidylinositol transfer protein; CKI1 encodes choline kinase of the cytidine diphosphate choline pathway of PtdCho biosynthesis). Five proteins (Sfhp) share sequence homology with phosphatidylinositol transfer protein Sec14p. Two (Sfh2p and Sfh4p), when overexpressed largely complement the otherwise essential Sec14p requirement concerning growth and secretion. In this study, we analysed the ability of Sec14 homologues to correct the defect in regulation of phospholipid biosynthesis resulting from defective or missing Sec14p. We also analysed how PtdCho turnover relates to the transcriptional regulation of phospholipid biosynthesis. The results show that (a) none of the Sec14 homologues was able to substitute for Sec14p in its regulatory aspects of phospholipid biosynthesis, (b) removal of phospholipase D activity corrected the aberrant INO1 gene regulation in yeast strains with otherwise high PtdCho turnover, and (c) increased steady-state phosphatidic acid levels correlated with derepressed levels of the INO1 gene. Overall, the results support the model in which high phosphatidic acid levels lead to derepression of the genes of phospholipid biosynthesis [Henry, S.A. & Patton-Vogt, J.L. (1998) Prog. Nucleic Acid Res. Mol. Biol.61, 133-179].
Mesh Terms:
Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Fungal, Genotype, Inositol, Phenotype, Phosphatidic Acids, Phosphatidylcholines, Phosphatidylinositols, Phospholipase D, Phospholipid Transfer Proteins, Phospholipids, Recombinant Proteins, Sequence Homology, Statistics as Topic, Transcription, Genetic, Yeasts
Eur. J. Biochem.
Date: Nov. 01, 2004
Download Curated Data For This Publication
20182
Switch View:
  • Interactions 7