Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes.
The SANT domain is a novel motif found in a number of eukaryotic transcriptional regulatory proteins that was identified based on its homology to the DNA binding domain of c-myb. Here we show that the SANT domain is essential for the in vivo functions of yeast Swi3p, Ada2p, and Rsc8p, ... subunits of three distinct chromatin remodeling complexes. We also find that the Ada2p SANT domain is essential for histone acetyltransferase activity of native, Gcn5p-containing HAT complexes. Furthermore, kinetic analyses indicate that an intact SANT domain is required for an Ada2p-dependent enhancement of histone tail binding and enzymatic catalysis by Gcn5p. Our results are consistent with a general role for SANT domains in functional interactions with histone N-terminal tails.
Mesh Terms:
Acetyltransferases, Catalysis, Chromatin, DNA-Binding Proteins, Fungal Proteins, Histone Acetyltransferases, Histones, Macromolecular Substances, Nuclear Proteins, Protein Kinases, Protein Structure, Tertiary, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Trans-Activators, Transcription Factors
Acetyltransferases, Catalysis, Chromatin, DNA-Binding Proteins, Fungal Proteins, Histone Acetyltransferases, Histones, Macromolecular Substances, Nuclear Proteins, Protein Kinases, Protein Structure, Tertiary, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Trans-Activators, Transcription Factors
Mol. Cell
Date: Oct. 01, 2002
PubMed ID: 12419236
View in: Pubmed Google Scholar
Download Curated Data For This Publication
20450
Switch View:
- Interactions 5