SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase.

Damaged DNA, if not repaired before replication, can lead to replication fork stalling and genomic instability; however, cells can switch to different damage bypass modes that permit replication across lesions. Two main bypasses are controlled by ubiquitin modification of proliferating cell nuclear antigen (PCNA), a homotrimeric DNA-encircling protein that functions ...
as a polymerase processivity factor and regulator of replication-linked functions. Upon DNA damage, PCNA is modified at the conserved lysine residue 164 by either mono-ubiquitin or a lysine-63-linked multi-ubiquitin chain, which induce error-prone or error-free replication bypasses of the lesions. In S phase, even in the absence of exogenous DNA damage, yeast PCNA can be alternatively modified by the small ubiquitin-related modifier protein SUMO; however the consequences of this remain controversial. Here we show by genetic analysis that SUMO-modified PCNA functionally cooperates with Srs2, a helicase that blocks recombinational repair by disrupting Rad51 nucleoprotein filaments. Moreover, Srs2 displays a preference for interacting directly with the SUMO-modified form of PCNA, owing to a specific binding site in its carboxy-terminal tail. Our finding suggests a model in which SUMO-modified PCNA recruits Srs2 in S phase in order to prevent unwanted recombination events of replicating chromosomes.
Mesh Terms:
Chromosomes, Fungal, DNA Damage, DNA Helicases, DNA Replication, Epistasis, Genetic, Mutagenesis, Mutation, Phenotype, Proliferating Cell Nuclear Antigen, Protein Binding, Recombination, Genetic, S Phase, SUMO-1 Protein, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sequence Homology, Nucleic Acid, Substrate Specificity, Ubiquitin-Conjugating Enzymes
Date: Jul. 21, 2005
Download Curated Data For This Publication
Switch View:
  • Interactions 14