Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2α/C-MYC axis under hypoxia.

It is well established that hypoxia contributes to tumor progression in a hypoxia inducible factor-2α (HIF-2α)-dependent manner in renal cell carcinoma (RCC), yet the role of long noncoding RNAs (LncRNAs) involved in hypoxia-mediated RCC progression remains unclear. Here we demonstrate that LncRNA-SARCC (Suppressing Androgen Receptor in Renal Cell Carcinoma) is ...
differentially regulated by hypoxia in a von Hippel-Lindau (VHL)-dependent manner both in RCC cell culture and clinical specimens. LncRNA-SARCC can suppress hypoxic cell cycle progression in the VHL-mutant RCC cells while derepress it in the VHL-restored RCC cells. Mechanism dissection reveals that LncRNA-SARCC can post-transcriptionally regulate androgen receptor (AR) by physically binding and destablizing AR protein to suppress AR/HIF-2α/C-MYC signals. In return, HIF-2α can transcriptionally regulate the LncRNA-SARCC expression via binding to hypoxia-responsive elements on the promoter of LncRNA-SARCC. The negative feedback modulation between LncRNA-SARCC/AR complex and HIF-2α signaling may then lead to differentially modulated RCC progression in a VHL-dependent manner. Together, these results may provide us a new therapeutic approach via targeting this newly identified signal from LncRNA-SARCC to AR-mediated HIF-2α/C-MYC signals against RCC progression.
Mesh Terms:
Basic Helix-Loop-Helix Transcription Factors, Carcinoma, Renal Cell, Cell Line, Tumor, Cell Proliferation, Gene Expression Regulation, Neoplastic, Humans, Promoter Regions, Genetic, Proto-Oncogene Proteins c-myc, RNA, Long Noncoding, Receptors, Androgen, Signal Transduction, Von Hippel-Lindau Tumor Suppressor Protein
Oncogene
Date: Sep. 15, 2016
Download Curated Data For This Publication
207395
Switch View:
  • Interactions 1