Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro.

RNA polymerase II lacking the fourth and seventh largest subunits (pol II delta 4/7) was purified from Saccharomyces cerevisiae strain rpb-4, in which the gene for the fourth largest subunit is deleted. pol II delta 4/7 was indistinguishable from wild-type pol II (holoenzyme) in promoter-independent initiation/chain elongation activity (400-800 nmol ...
of nucleotide incorporated/10 min/mg of protein at 22 degrees C), in rate of chain elongation (20-25 nucleotides/s), and in the recognition of pause sites in the DNA template. In contrast to pol II holoenzyme, pol II delta 4/7 was inactive in promoter-directed initiation of transcription in vitro. The addition of an equimolar complex of the fourth and seventh largest subunits, purified from pol II holoenzyme by ion-exchange chromatography in the presence of urea, restored promoter-directed initiation activity to pol II delta 4/7. The transcriptional activator protein Gal4-VP16 could also elicit promoter-directed initiation by pol II delta 4/7 from a promoter with a Gal4 binding site. Complementation was observed between extracts of strain rpb-4, lacking the fourth largest subunit, and strain Y260-1, with a defect in the largest subunit. These extracts were individually inactive, but a mixture would support promoter-directed initiation. The fourth and seventh largest subunits may, therefore, shuttle between polymerase molecules.
Mesh Terms:
Cell Nucleus, Chromosome Deletion, Genes, Fungal, Genetic Complementation Test, Kinetics, Macromolecular Substances, Promoter Regions, Genetic, RNA Polymerase II, Saccharomyces cerevisiae, Transcription, Genetic
J. Biol. Chem.
Date: Jan. 05, 1991
Download Curated Data For This Publication
20859
Switch View:
  • Interactions 1