90K Glycoprotein Promotes Degradation of Mutant β-Catenin Lacking the ISGylation or Phosphorylation Sites in the N-terminus.

β-Catenin is a major transducer of the Wnt signaling pathway, which is aberrantly expressed in colorectal and other cancers. Previously, we showed that β-catenin is downregulated by the 90K glycoprotein via ISGylation-dependent degradation. However, the further mechanisms of β-catenin degradation by 90K-mediated ISGylation pathway were not investigated. This study aimed ...
to identify the β-catenin domain responsible for the action of 90K and to compare the mechanism of 90K on β-catenin degradation with phosphorylation-dependent ubiquitinational degradation of β-catenin. The deletion mutants of β-catenin lacking N- or C-terminal domain or mutating the N-terminal lysine or nonlysine residue were employed to delineate the characteristics of β-catenin degradation by 90K-mediated ISGylation pathway. 90K induced Herc5 and ISG15 expression and reduced β-catenin levels in HeLa and CSC221 cells. The N-terminus of β-catenin is required for 90K-induced β-catenin degradation, but the N-terminus of β-catenin is not essential for interaction with Herc5. However, substituting lysine residues in the N-terminus of β-catenin with arginine or deleting serine or threonine residue containing domains from the N-terminus does not affect 90K-induced β-catenin degradation, indicating that the N-terminal 86 amino acids of β-catenin are crucial for 90K-mediated ISGylation/degradation of β-catenin in which the responsible lysine or nonlysine residues were not identified. Our present results highlight the action of 90K on promoting degradation of mutant β-catenin lacking the phosphorylation sites in the N-terminus. It provides further insights into the discrete pathway downregulating the stabilized β-catenin via acquiring mutations at the serine/threonine residues in the N-terminus.
Mesh Terms:
Antigens, Neoplasm, Biomarkers, Tumor, Carrier Proteins, Cell Line, Gene Deletion, Glycoproteins, Glycosylation, Humans, Intracellular Signaling Peptides and Proteins, Mutant Proteins, Phosphorylation, Protein Binding, Protein Interaction Domains and Motifs, Proteolysis, Signal Transduction, beta Catenin
Neoplasia
Date: Oct. 01, 2016
Download Curated Data For This Publication
211654
Switch View:
  • Interactions 1