Defining essential elements and genetic interactions of the yeast Lsm2-8 ring and demonstration that essentiality of Lsm2-8 is bypassed via overexpression of U6 snRNA or the U6 snRNP subunit Prp24.
A seven-subunit Lsm2-8 protein ring assembles on the U-rich 3' end of the U6 snRNA. A structure-guided mutational analysis of the Saccharomyces cerevisiae Lsm2-8 ring affords new insights to structure-function relations and genetic interactions of the Lsm subunits. Alanine scanning of 39 amino acids comprising the RNA-binding sites or intersubunit ... interfaces of Lsm2, Lsm3, Lsm4, Lsm5, and Lsm8 identified only one instance of lethality (Lsm3-R69A) and one severe growth defect (Lsm2-R63A), both involving amino acids that bind the 3'-terminal UUU trinucleotide. All other Ala mutations were benign with respect to vegetative growth. Tests of 235 pairwise combinations of benign Lsm mutants identified six instances of inter-Lsm synthetic lethality and 45 cases of nonlethal synthetic growth defects. Thus, Lsm2-8 ring function is buffered by a network of internal genetic redundancies. A salient finding was that otherwise lethal single-gene deletions lsm2Δ, lsm3Δ, lsm4Δ, lsm5, and lsm8Δ were rescued by overexpression of U6 snRNA from a high-copy plasmid. Moreover, U6 overexpression rescued myriad lsmΔ lsmΔ double-deletions and lsmΔ lsmΔ lsmΔ triple-deletions. We find that U6 overexpression also rescues a lethal deletion of the U6 snRNP protein subunit Prp24 and that Prp24 overexpression bypasses the essentiality of the U6-associated Lsm subunits. Our results indicate that abetting U6 snRNA is the only essential function of the yeast Lsm2-8 proteins.
Mesh Terms:
Amino Acid Sequence, Binding Sites, Mutation, Protein Binding, RNA Splicing, RNA, Fungal, RNA, Small Nuclear, Ribonucleoproteins, Small Nuclear, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sequence Deletion
Amino Acid Sequence, Binding Sites, Mutation, Protein Binding, RNA Splicing, RNA, Fungal, RNA, Small Nuclear, Ribonucleoproteins, Small Nuclear, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sequence Deletion
RNA
Date: Dec. 01, 2017
PubMed ID: 29615482
View in: Pubmed Google Scholar
Download Curated Data For This Publication
211799
Switch View:
- Interactions 23