Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3.

Hypoxia induces expression of various genes and microRNAs (miRs) that regulate angiogenesis and vascular function. In this study, we investigated a new functional role of new hypoxia-responsive miR-101 in angiogenesis and its underlying mechanism for regulating heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) expression.We found that hypoxia induced ...
miR-101, which binds to the 3'untranslated region of cullin 3 (Cul3) and stabilizes nuclear factor erythroid-derived 2-related factor 2 (Nrf2) via inhibition of the proteasomal degradation pathway. miR-101 overexpression promoted Nrf2 nuclear accumulation, which was accompanied with increases in HO-1 induction, VEGF expression, and endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) production. The elevated NO-induced S-nitrosylation of Kelch-like ECH-associated protein 1 and subsequent induction of Nrf2-dependent HO-1 lead to further elevation of VEGF production via a positive feedback loop between the Nrf2/HO-1 and VEGF/eNOS axes. Moreover, miR-101 promoted angiogenic signals and angiogenesis both in vitro and in vivo, and these events were attenuated by inhibiting the biological activity of HO-1, VEGF, or eNOS. Moreover, these effects were also observed in aortic rings from HO-1(+/-) and eNOS(-/-) mice. Local overexpression of miR-101 improved therapeutic angiogenesis and perfusion recovery in the ischemic mouse hindlimb, whereas antagomiR-101 diminished regional blood flow.Hypoxia-responsive miR-101 stimulates angiogenesis by activating the HO-1/VEGF/eNOS axis via Cul3 targeting. Thus, miR-101 is a novel angiomir.Our results provide new mechanistic insights into a functional role of miR-101 as a potential therapeutic target in angiogenesis and vascular remodeling.
Mesh Terms:
Animals, Cell Hypoxia, Cullin Proteins, Endothelial Growth Factors, Heme Oxygenase-1, Mice, MicroRNAs, NF-E2-Related Factor 2, Neovascularization, Physiologic, Nitric Oxide, Nitric Oxide Synthase Type III, Vascular Endothelial Growth Factor A
Antioxid. Redox Signal.
Date: Dec. 20, 2014
Download Curated Data For This Publication
212783
Switch View:
  • Interactions 3