LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer.

In breast cancer, p53 could be functionally compromised by interaction with several proteins. Among those proteins, MDM2 serves as a pivotal negative regulator and counteracts p53 activation. Thus, the ability to quantitatively and accurately monitor the changes in level of p53-MDM2 interaction with disease state can enable an improved understanding ...
of this protein-protein interaction (PPI), provide a better insight into cancer development and allow the emergence of advanced treatments. However, rare studies have evaluated the quantitative extent of PPI including p53-MDM2 interaction so far. In this study, a LC-MS/MS-based targeted proteomics assay was developed and coupled with co-immunoprecipitation (Co-IP) for the quantification of p53-MDM2 complex. A p53 antibody with the epitope residing at 156-214 residues achieved the greatest IP efficiency. 321KPLDGEYFTLQIR333 (p53) and 327ENWLPEDK334 (MDM2) were selected as surrogate peptides in the targeted analysis. Stable isotope-labeled synthetic peptides were used as internal standards. An LOQ (limit of quantification) of 2ng/mL was obtained. Then, the assay was applied to quantitatively detect total p53, total MDM2 and p53-MDM2 in breast cells and tissue samples. Western blotting was performed for a comparison. Finally, a quantitative time-course analysis in MCF-7 cells with the treatment of nutlin-3 as a PPI inhibitor was also monitored.Proteins do not function as single entities but rather as a team player that has to communicate. Protein-protein interaction (PPI), normally by means of non-covalent contact among binary or large protein complex, is essential for many cellular processes including cancer progression. Thus, the ability to quantitatively and accurately monitor the changes in level of PPI with disease state can enable an improved understanding of PPI, provide a better insight into cancer development and allow the emergence of advanced treatments. However, rare studies have evaluated the quantitative extent of PPI so far. The major issue of current available approaches is the trade-off between sensitivity and specificity. Thus, techniques with the ability to quantify PPIs with both high sensitivity (low false-negative rate) and high specificity (low false-positive rate) are eagerly desired. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics has shown its potential to study biomolecules because of its high sensitivity, high selectivity and wide dynamic range. In this study, we made an effort to develop a LC-MS/MS-based targeted proteomics assay for the quantitative detection of p53-MDM2 interaction in breast cells and tissue samples.
Mesh Terms:
Biopsy, Breast Neoplasms, Cell Line, Tumor, Chromatography, Liquid, Humans, Imidazoles, MCF-7 Cells, Piperazines, Protein Interaction Maps, Proteomics, Proto-Oncogene Proteins c-mdm2, Tandem Mass Spectrometry, Tumor Suppressor Protein p53
J Proteomics
Date: Dec. 30, 2016
Download Curated Data For This Publication
213600
Switch View:
  • Interactions 3