A Bioluminescent Biosensor for Quantifying the Interaction of SARS-CoV-2 and Its Receptor ACE2 in Cells and In Vitro.

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is currently spreading and mutating with increasing speed worldwide. Therefore, there is an urgent need for a simple, sensitive, and high-throughput (HTP) assay to quantify virus-host interactions in order to quickly evaluate the infectious ability of mutant viruses and to develop or validate ...
virus-inhibiting drugs. Here, we developed an ultrasensitive bioluminescent biosensor to evaluate virus-cell interactions by quantifying the interaction between the SARS-CoV-2 receptor binding domain (RBD) and its cellular receptor angiotensin-converting enzyme 2 (ACE2) both in living cells and in vitro. We have successfully used this novel biosensor to analyze SARS-CoV-2 RBD mutants and evaluated candidate small molecules (SMs), antibodies, and peptides that may block RBD:ACE2 interaction. This simple, rapid, and HTP biosensor tool will significantly expedite the detection of viral mutants and the anti-COVID-19 drug discovery process.
Mesh Terms:
Angiotensin-Converting Enzyme 2, Antibodies, Neutralizing, Binding Sites, Biosensing Techniques, HEK293 Cells, High-Throughput Screening Assays, Host Microbial Interactions, Humans, In Vitro Techniques, Luminescent Proteins, Protein Binding, Protein Domains, SARS-CoV-2, Spike Glycoprotein, Coronavirus
Viruses
Date: Dec. 02, 2020
Download Curated Data For This Publication
226628
Switch View:
  • Interactions 1