Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer.

BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions ...
with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.
Mesh Terms:
Animals, Antineoplastic Agents, Azepines, Cell Cycle Proteins, Cell Line, Tumor, Chromosomal Proteins, Non-Histone, Drug Resistance, Neoplasm, Female, Gene Expression Regulation, Neoplastic, Humans, Mice, Mice, Inbred NOD, Nuclear Proteins, Proteins, Signal Transduction, Transcription Factors, Triazoles, Triple Negative Breast Neoplasms
Mol Cell
Date: Dec. 18, 2019
Download Curated Data For This Publication
226719
Switch View:
  • Interactions 1,014